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ABSTRACT: We present the mathematical equations that
govern heat transfer in a polymer melt flowing in a circular
tube with constant ambient temperature, taking into account
the viscous dissipation effects. This leads to a nonlinear
parabolic partial differential equation. It is shown that the
exact solution of a linearized version of the governing equa-
tion can be presented in terms of the Whittaker function. A
finite difference scheme is used to produce an approximate
solution of the linearized problem. This numerical solution

is shown to be a good approximation to the exact solution
found in terms of the Whittaker function. The finite differ-
ence scheme is then modified to approximate the nonlinear
parabolic partial differential equation and is compared with
the results found using the finite element method. © 2006
Wiley Periodicals, Inc. J Appl Polym Sci 102: 289–294, 2006
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INTRODUCTION

The continuity equation for a fluid flowing through a
circular tube of radius R and length L is given in
cylindrical coordinates (r, �, x) by

��

�t � � �1
r

�

�r r�Vr �
1
r

�

��
�V� �

�

�x �Vx� , (1)

0 � r � R, 0 � � � 2�, 0 � x � L, where � is the fluid
density and Vr, V�, and Vx are the components of
velocity in the coordinate directions. For an incom-
pressible steady-state flow, � is constant and V� � Vr

� 0, and eq. (1) reduces to

�

�x Vx � 0. (2)

The momentum flux balance on a fluid element is
given by

�
�Vx
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�Vx

�r �
V0

r
�Vx

��
� Vx

�Vx

�x �
� �1

r
�

�r r	rx �
1
r

�

��
	�x �
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x 	xx� �
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�x � �gx (3)

where P is the fluid pressure, �gx is the gravitational
force per unit volume, and 	 is the shear stress.1 The
first subscript of 	 indicates the axis perpendicular to
the plane on which the stress is acting and the second
subscript indicates the direction of the stress. The
gravitational term will be neglected, as it is relatively
small in comparison to the frictional forces and pres-
sure. It follows from the steady-state assumption that
	rx is the only nonzero component of shear stress.
Thus, eq. (3) reduces to

0 � �
1
r

�

�r 		rx �
�P
�x . (4)

For a nonisothermal flow, the energy equation must
also be considered. The energy equation is given by
Ref. 1.

�Cv��T
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(5)

where T is temperature, Cv is the heat capacity, qr, q�,
and qx are the heat flux in the r, �, and x directions,
respectively, and (	 : ƒv) is the viscous dissipation
term defined by
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The steady-state criterion implies
�T
�t � 0. Using the

conditions Vr

�T
�r � 0, V�

�T
��

� 0, and (	 : ƒv) � 	rx

�Vx

�r
and assuming that the heat flux in the � direction is 0,
eq. (5) reduces to

�CvVx

�T
�x � �

1
r

�

�r
�rqr� �

�qx

�x
� 	rx

�Vx

�r
. (6)

Using Fourier’s law of heat conduction, qx � �k
�T
�x

and qr � �k
�T
�r

, where k is the thermal conductivity of

the pipe, eq. (6) becomes

�CvVx

�T
�x

�
k
r

�

�r
�r
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�r
� � k

�2T
�x

2 � 	rx

�Vx
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. (7)

Using 	rx � 
�, where 
 is the viscosity and � is the

shear rate, � � �
�Vx

�r
, eq. (7) reduces to

�CvVx

�T
�x

� k
�2T
�r

2 �
k
r

�T
�r � k�

�2T
�x

2 � 	rx

�Vx

�r
. (8)

For a power law fluid, the viscosity 
 can be described
by


 � ��̇n�1, (9)

where � is the consistency factor and n is the power
law exponent. For most polymers, n ranges from 0.2 to
0.7 with n � 1 corresponding to Newtonian behavior.2

In general, viscosity is a function of shear rate, tem-
perature, pressure, and time. In this article, we will
only discuss the case where viscosity is dependent on
temperature and shear rate.

If 
(�̇, T0) and 
(�̇, T) are viscosity functions for the
same polymer at temperatures T0 and T, respectively,
the Arrhenius law states that 
(�̇, T0) and 
(�̇, T) are
related by


��̇,T� � 
��̇,T0�e�T0�T�, (10)

where  is a material dependent constant. Using eq. (9),
eq. (10) becomes


��̇,T� � ��̇n�1e�T0�T�, (11)

where 
(�̇, T0) � ��̇n�1. Substituting (11) in (8) yields

�CvVx

�T
�x

� k
�2T
�r2 �

k
r

�T
�r � k

�2T
�x

2 � ��̇n�1e�T0�T�.

(12)

Vx and �̇ can be written in terms of the average flow
velocity V� x as follows.2

Vx � V� x

m � 3
m � 1�1 � � r

R�
m�1� (13)

�̇ � �m � 3�
Vx

R � r
R�

m

(14)

Substituting eqs. (13) and (14) into eq. (12), we get

�CvV� x

m � 3
m � 1�1 � � r

R�
m�1��T

�x
� k

�2T
�r

2 �
k
r

�T
�r

� k
�2T
�x

2

� �
�m � 3�n�1V� x

n�1

Rn�1 � r
R�

m�n�1�

e�T0�T� (15)

This partial differential equation describes the temper-
ature in the flow channel as a function of r and x. The
boundary conditions are:

at r�0, the temperature is finite,

at r � R, k
�T
�r � q0 (constant heat flux at the wall),

at x � 0, T � T1 (uniform inlet fluid temperature),

at r � 0,
�T
�r

� 0 (symmetry) .

.

(16)

We introduce the dimensionless variables

r� �
r
R ,

u �
�m � 1�k

�m � 3��CvVxR2 x,

A � �eT0
�M � 3�n�1Vx

n�1

kRn�1 .

With these dimensionless variables, eq. (15) becomes
the nonlinear elliptic partial differential equation

�1 � �r��m�1�
�T
�u

�
�2T
�r�2 �

1
r

�T
�r� � AR2e�Tr�m�1 (17)

where
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D � � �m � 1�k

�m � 3��CvV� xR2� 2

.

When k is small, D is small and the term containing D
in eq. (17) may be neglected. In this case, eq. (17)
reduces to the parabolic equation

�1 � �r��m�1�
�T
�u

�
�2T
�r�2 �

1
r�

�T
�r� � AR2e�Tr�m�1 (18)

Remark: eq. (18) approximates the flow away from the

entrance of the pipe where the term
�2T
�u

2 is small. Near

the entrance, the term containing D in eq. (17) may be
large and cannot be neglected. Therefore, the results of
this article will represent the flow well far from the
entrance.

TEMPERATURE PROFILE FOR NEWTONIAN
FLOW

For Newtonian flow, m � 1. Assuming k is very small,
we may neglect the term containing D as well as the
viscous term, and eq. (18) becomes

�1 � �r��2�
�T
�u

�
�2T
�r�2 �

1
r

�T
�r� . (19)

Equation (19) is linear and can be solved analytically.
with the change of variable

	 �
k�T � T0�

q0R ,

Equation (19) becomes

�1 � �r��2�
�	

�u �
�2	

�r�2 �
1
r�

�	

�r� . (20)

Following Ref. 1, we assume a solution for eq. (20) of
the form

	�u,r�� � 	
�u,r�� � 	d�u,r�� (21)

where �
 (u, r�) is the asymptotic solution and is given
by

	
�u,r�� � 4u � r�2 �
1
4 r�4 �

7
24,

and �d is expected to dampen exponentially with
time. By substituting eq. (21) into eq. (20), we find that
�d (u, r�) must satisfy the following boundary condi-
tions:

at r� � 0,
�	

�r� � 0,

at r� � 1,
�

�	r� � 0,

at u � 0, 	d � 	
�0,r��. (22)

If we assume that �d (u, r�) is separable, that is

	d�u,r�� � Z�u�X�r��, (23)

then, eqs. (20) and (21) can be separated into the
differential equations:

�Z
�u � � c2Z, (24)

�2X
�r�2 �

1
r�

�X
�r� � c2�1 � r�2�X � 0, (25)

where �c2 is the separation constant. Equation (25) is
a Sturm-Liouville problem and has an infinite number
of eigenvalues ck and eigenfunctions Xk. Thus, �d (r�, u)
must be of the form

	d�u,r�� � �
k�1




Bke�ck
2uXk�r��.

From the Sturm-Liouville theory,

Bk �

�
0

1

	
�0,r��Xk�r���1 � r�2�r�dr�

�
0

1

�Xk�r���2�1 � r�2�r�dr�

,

and the eigenfunctions Xk can be found by solving eq.
(25).3

To solve (25), let Xk �
Vk

r� . Then,

�Xk

�r� �
1
r�

�Vk

�r� �
Vk

r�2 , (26)

�2Xk

�r�2 �
1
r

�2Vk

�r�2 �
2
r2

�Vk

�r� �
2Vk

r�3 . (27)

Substituting eqs. (26) and (27) into eq. (25) and rear-
ranging terms, we obtain

�2Vk

�r�2 �
1
r

�Vk

�r� �
Vk

r�2 � ck
2�1 � r�2�Vk � 0. (28)

With the change of variables y � ckr�
2
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�Vk

�r� � 2�cky
�Vk

�y
, (29)

�2Vk

�r�2 � 4cky
�2Vk

�y
2 � 2ck

�V
�y . (30)

Substituting eqs. (29) and (30) into eq. (28), we get

�2Vk

�y2 � � �
1
4 �

ck

4y �
4
y2�Vk � 0. (31)

Equation (31) is a Whittaker differential equation
whose solutions Mk,m,(y) and Wk,m(y) are given by

Mk,m�y� � e
�y
2 ym�

1
2 F1,1�1

2 � m � k,1 � 2m;y� ,

Wk,m�y� � e
�y
2 ym�

1
2 U�1

2 � m � k,1 � 2m;y� ,

where F1,1 (a, b; y) and U(a, b; y) are hypergeometric
functions. Therefore, we can write Vk(y) as a linear
combination of Mk,m(y) and Wk,m(y),

Vk�y� � SMck

4 ,0�y� � QWck

4 ,0�y�,

The boundary conditions on the eigenfunctions are

at r� � 0,
�Xk�r��

�r� � 0,

at r� � 1,
�Xk�r��

�r� � 0.
(32)

Using these boundary conditions, we find that Q must

be 0, and S �
1

�ck
Ck. Thus, the eigenfunctions are given

by

Xk�r�� �
1

�ck
Mck

4 ,0�ckr�2� � e�
ck

2 r2F1,1�1
2 �

ck

4 ,1;ckr�2� .

The ck’s can be found by applying the second bound-
ary condition of eq. (32). Each corresponding Xk is
evaluated and used to find Bk. The first 10 values for
each are shown in Table I. Our results compare well
with the results of Ref. 4.

FINITE DIFFERENCE METHOD

In this section, we use an explicit finite difference
scheme to approximate the solution of eq. (20). The
domain of �(r�, u) is replaced by a grid. At each point
on the grid, eq. (20) is represented by a difference
equation. The values of �(r�, u) at the boundary points

of the grid are given from the boundary conditions,
and �(r�, u) at the remaining points of the grid are
determined using the difference equations.

Using the difference quotients,

�	�u,r��
�u ��uk,rn� 	

	�uk�1 � �u,r�n� � 	�uk,r�n�

�u

�
	k�1,n � 	k,n

�u ,

�	�u,r��
�r� ��uk,rn� 	

	�uk,r�n � �r�� � 	�uk,r�n�

�r�

�
	k,n�1 � 	k,n

�r� ,

�2	�u,r��
�r�2 ��uk,rn� 	

	�uk,r�n � �r�� � 2	�uk,r�n� � 	�uk,r�n � �r��
��r��2

�
	k,n�1 � 2	k,n � 	k,n�1

��r��2 ,

Eq. (20) becomes

	k�1,n � 	k,n �
�u

1 � r�2�	k,n�1 � 2	k,n � 	k,n�1

��r�2

�
1
r�

	k,n � 	k,n�1

�r� � . (33)

Equation (33), together with the following boundary
conditions,

	0,n � 0 for 0 � n � NT ,

�	�u,r��
�r� �r�0 � 0 (symmetry) ,

TABLE I
The First 10 Values for ck, Xk, and Bk

k ck Xk (1) Bk

1 5.067505501 �0.4925165736 0.4034832179
2 9.157606426 0.3955084753 �0.175110001
3 13.19722474 �0.3458736768 0.10559172
4 17.22022936 0.3140464817 �0.073282404
5 21.23551728 �0.2912514573 0.055036507
6 25.24653118 0.2738069527 �0.043484384
7 29.25490555 �0.2598530271 0.03559511
8 33.26152373 0.2483319661 �0.02845542
9 37.26690821 �0.2385903994 0.025640121

10 41.27138935 0.2301992523 �0.022333705
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is used to approximate �(u, r�) at the remaining points
of the grid. Notice that a weighted average is used at
the corner of the grid. Notice also that by applying the
limits as r� approaches 1 from below and using the
condition (32), eq. (33) may be replaced by �k�1,0 �

�k,0 � 4�u
	k,1 � 	k,0

��r��2 for r� � 1. In Figure 1, we com-

pare the numerical results obtained using the finite
difference method and Matlab’s pde solving package
with the analytical solution at 0.1 unit distance from
the entrance of the pipe.

From Figure 1, we see that the finite difference
scheme developed here provides a reasonable approx-
imation to the analytical solution. To ensure stability
of the finite difference solution, we used �x � (�r)2.5

NON-NEWTONIAN FLOW

In this section, we combine the finite difference
scheme developed in the previous section with the
fixed point iteration to approximate the solution of the
nonlinear eq. (17). The temperature value �k,n is used
as a starting value in the viscous term for �k � 1,n in
eq. (18). Iteration is then implemented until the differ-
ence between two successive terms is less than a spec-
ified tolerance. We use the following data taken from
Ref. 6: T0 � 399.5 K, T1 � 403.15 K, Tw � 433.15 K, Vx

� 15 cm/s, n � 0.453, � � 0.000794 km/cm3, Cv � 2510
J/(kg K), k � 0.00255 W/(cm K), R � 0.125 cm, �
� 2.82 Nsn/cm2, and  � 0.01872 K�1. Note that with
these data, D � 1.7667  10�7, and the heat conductive

term D
�2T
�u2 of eq. (17) can be neglected. Figure 2 shows

the finite difference solution of eq. (18), along with the
solution obtained using Matlab’s pde solving tools.

Numerical steady state, when using the finite dif-
ference method, is achieved at approximately u � 1.85.
After this, there is no change in the temperature pro-

file up to the fifth decimal position. At steady state, eq.
(18) can be solved analytically.7 The steady-state solu-
tion is given by

T�u,r�� � Tw �
2


ln
C1r�

3n�1
n � 1

C1 � 1 (34)

where

C1 � �nBC � �3n � 1
n � 2

enBTw

nBC
2 � 1

�

nBC � �3n � 1
n � 2

enBTw

nBC ,
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Figure 2 Temperature profile comparison at u � 0.017 axial
distance.
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Figure 3 Numerical solutions (u � 1.85) versus the analyt-
ical solution at steady state.
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Figure 1 Temperature profile of Newtonian fluid (u � 0.1).

FINITE DIFFERENCE SOLUTIONS OF THE HEAT EQUATION 293



C �
V� x

n�1

k W enBT0

�3n � 1
n � 2� 2

Rn�1

and W � 2.82 Nsn/cm2.6 In Figure 3, we compare the
numerical solutions obtained using the finite differ-
ence method and using the Matlab pde solver with the
analytical solution (34).

Bulk temperature is often calculated to find an av-
erage temperature in a circular cross section of the
pipe. This quantity is defined by

TBulk�u� �

�
0

1

T�u,r��Y�u,r��r�dr�

�
0

1

Y�u,r��r�dr�

, (35)

where Y(u, r�) is the velocity function and is given by

Y�u,r�� � V� x

�m � 3��1 � rm�1�

�m � 1�
.

Wei and Zhang found that lim
u3


TBulk(u) � 725.55 K.7

Combining the finite difference method introduced
here and Simpson’s method, we obtain lim

u3


TBulk(u)

� 730.19 K, while Matlab yields lim
u3


TBulk(u) � 731.20 K.

Figure 4 compares the numerical results obtained
using the finite difference method and Matlab pde
solver.

In conclusion, we observe that the finite difference
scheme developed in this article has the advantage of
being simpler than the methods used in Refs. 7 and 8,
yet gives as accurate numerical results.

The authors thank Professor Dongming Wei for his com-
ments on this article. The authors also thank the referee of
this article for the useful comments.
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